LECTURES ON SINGULARITIES AND ADJOINT LINEAR SYSTEMS

LAWRENCE EIN

Abstract.

1. Singularities of Surfaces

Let (X, o) be an isolated normal surfaces singularity. The basic philosophy is to replace the singularity by a manifold. This procedure is the resolution of singularities.

Definition 1.1. Let (X, o) be a normal surface singularity. A resolution of the singularity (X, o) is a proper birational morphism $f: Y \rightarrow$ X, where Y is smooth. The set $f^{-1}(o)=E_{1} \cup \cdots \cup E_{n}$ is called the exceptional divisor.

Remark 1.2. Since X is normal, then $f^{-1}(o)$ is connected, hence has no isolated points. This implies that E_{i} are distinct irreducible curves.
Theorem 1.3. The intersection matrix $\left(\left(E_{i} \cdot E_{j}\right)\right)$ is negative definite, where E_{i} are the exaction curves.

Proof. We only need to show that for any non-trivial divisor $D=$ $\sum a_{i} E_{i}, D^{2}<0$. Assume for contradiction that $D^{2} \geq 0$. We will reduce to that D is effective. Write $D=A-B$ such that A and B are effective and have no common components. Then $D^{2}=A^{2}-2 A \cdot B+B^{2} \geq 0$. Since $A \cdot B \geq 0$, hence $A^{2} \geq 0$ or $B^{2} \geq 0$. Assume that $A^{2} \geq 0$. Moreover, we may assume that X and Y are projective. Take an ample divisor H on X. Then $f^{*} H^{2}=H^{2}>0$ and $A \cdot f^{*} H=0$. By Hodge index theorem, the intersection matrix over H^{\perp} is negative definite. This is a contradiction.

Definition 1.4. A divisor D on a projective variety X is called nef (numerically effective) if $D \cdot C \geq 0$ for any curve C on X. We say X is minimal if the canonical divisor K_{X} is nef.

In higher dimension, to run the MMP, we will encounter singularities. But the singularities are not too bad.

Theorem 1.5. Let $\varphi: Y \rightarrow X$ be a proper birational map. If X is minimal, then φ is a morphism.

Definition 1.6. Let $f: Y \rightarrow X$ be a proper birational morphism. We say that a divisor D is f-nef if $D \cdot C \geq 0$ for any f-exceptional curves C.

Lemma 1.7 (Negativity Lemma). Let $f: Y \rightarrow X$ be a proper birational morphism with exceptional divisor E_{i}. If the divisor $D=\sum a_{i} E_{i}$ is a f-nef divisor, then $-D$ is effective.

Proof. We will first proof the case that X and Y are surface. Write $D=A-B$ where A and B are effective divisors and have no common components. Since D is f-nef, hence $D \cdot A=A^{2}-A \cdot B \geq 0$. On the other hand, $A^{2} \leq 0$ and $A \cdot B \geq 0$. Therefore, $A^{2}-A \cdot B \leq 0$. This implies that $A=0$. Therefore $-D=B$ is effective.

For higher dimensional case, we may cut X by $n-3$ general hypersurface to reduce to the surface case.

Proof of the Theorem. Take a resolution of the birational map φ. We get the a variety Z and two birational morphisms $f: Z \rightarrow Y$ and $g: Z \rightarrow X$. We will use the nefness of K_{X} to show that no such resolution is needed. Write

$$
\begin{aligned}
K_{Z} & =f^{*} K_{Y}+\sum a_{i} E_{i}+\sum f_{j} F_{i} \\
& =g^{*} K_{X}+\sum a_{i}^{\prime} E_{i}+\sum g_{k} G_{k}
\end{aligned}
$$

where E_{i} are f - and g-exceptional divisors, F_{j} are f-exceptional but not g-exceptional divisors and G_{k} are g-exceptional but not f-exceptional
divisor. Then $a_{i}, a_{i}^{\prime}, f_{j}$ and g_{k} are nonnegative. Consider the difference

$$
\left(g^{*} K_{X}+\sum a_{i}^{\prime} E_{i}+\sum g_{k} G_{k}\right)-\left(f^{*} K_{Y}+\sum a_{i} E_{i}+\sum f_{j} F_{i}\right)=0
$$

We get

$$
g^{*} K_{X}-f^{*} K_{Y}+\sum g_{k} G_{k}=\sum f_{j} F_{i}+\sum\left(a_{i}-a_{i}^{\prime}\right) E_{i} .
$$

Note that the left hand side is f-nef since K_{X} is nef and G_{k} are not f-exceptional. Then by Negativity Lemma, $-\sum f_{j} F_{i}+\sum\left(a_{i}^{\prime}-a_{i}\right) E_{i}$ must be nef. Hence f_{j} must be zero and $a_{i}^{\prime} \geq a_{i}$. In other words, there is no f-exceptional but not g-exceptional divisors. Hence, there is no blowing up of φ needed. Therefore, $\varphi: Y \rightarrow X$ is a morphism.

Let X be a smooth projective variety. Denote by $N_{1}(X)_{\mathbb{R}}$ the space of 1-cycles of X modulo numerical equivalence. It is know that $N_{1}(X)$ is a finite dimensional space. Denote by $N E_{1}(X)$ the subspace of effective curves.

Theorem 1.8 (Cone Theorem).

$$
\overline{N E}_{1}(X)=\overline{N E}_{1}(X)_{K_{X} \geq 0}+\sum \mathbb{R}_{+} C_{i}
$$

where C_{i} are rational curves such that $-K_{X} \cdot C_{i} \leq \operatorname{dim} X+1$. Moreover, C_{i} 's form a countable collection.

Those C_{i} 's a
Assume that X is a surface. Then
(1) if $-K_{X} \cdot C_{i}=1$ then $C_{i}^{2}=-1$ which implies that C_{i} is a smooth (-1)-curve.
(2) if $-K_{X} \cdot C_{i}=2$ then $C_{i}^{2}=0$ which implies that X is a ruled surface.
(3) if $-K_{X} \cdot C_{i}=3$ then $X=\mathbb{P}^{2}$.

Definition 1.9. Let $f: Y^{2} \rightarrow\left(X^{2}, o\right)$ be a resolution of an isolated normal surface singularity and $f^{-1}(o)=E_{1} \cup \cdots \cup E_{n}$. A effective
cycle $Z_{\text {nef }}=\sum a_{i} E_{i}$ is called a minimal nef cycle, if $-Z_{\text {nef }}$ is nef and $Z_{\text {nef }} \leq D$ for any effective cycle $D=\sum d_{i} E_{i}$ such that $-D$ is nef.

Proposition 1.10. $Z_{\text {nef }}$ is well-defined and unique.

Proof. Let $D=\sum d_{i} E_{i}$ and $D^{\prime}=\sum d_{i}^{\prime} E_{i}$ be two effective cycles such that $-D$ and $-D^{\prime}$ are nef. Define $D^{\prime \prime}=\operatorname{Min}\left(D, D^{\prime}\right)=\sum \min \left(d_{i}, d_{i}^{\prime}\right) E_{i}$. We claim that $-D^{\prime \prime}$ is nef. Write $D=D^{\prime \prime}+R_{1}$ and $D^{\prime}=D^{\prime \prime}+R_{2}$. Then R_{1} and R_{2} have no common components. Therefore any exceptional curve E_{i} can appear in at most one of the two cycles R_{1} and R_{2}. Without lose of generality, we assume that E_{i} does not appear in R_{1}. Then $D^{\prime \prime} \cdot E_{i}=D \cdot E_{i}-R_{1} \cdot E_{i} \leq 0$. Therefore $-D^{\prime \prime}$ is nef.

1.1. Rational singularities.

Definition 1.11 (Rational Singularity). A morphism $f: Y \rightarrow X$ is said to be a rational resolution if Y is smooth and f is a proper and birational morphism such that $R^{i} f_{*} \mathscr{O}_{Y}=0$ for $i>0$.

Proposition 1.12. Let $f: Y \rightarrow X$ be a rational resolution and f^{\prime} : $Y^{\prime} \rightarrow X$ be another resolution. Then $f^{\prime}: Y^{\prime} \rightarrow X$ is also a rational resolution.

Proof. We have a birational map $\varphi: Y \rightarrow Y^{\prime}$. Successively Blowing up the undefined locus of φ, we get a variety Z and two proper birational morphisms $g: Z \rightarrow Y$ and $g^{\prime}: Z \rightarrow Y^{\prime}$ such that $h:=f \circ g=f^{\prime} \circ g^{\prime}$. Since g is the composition of blowing-ups. Then $R^{q} g_{*}\left(\mathscr{O}_{Z}\right)=0$ for $q>0$. Apply the Leray spectral sequence

$$
E_{2}^{p, q}=R^{p} f_{*}\left(R^{q} g_{*}(\mathscr{F})\right) \Rightarrow R^{p+q}(f \circ g)_{*}(\mathscr{F}) .
$$

It follows that $R^{i} h_{*} \mathscr{O}_{Z}=0$ for $i>0$. Apply the Leray spectral sequence to $f^{\prime} \circ g^{\prime}$. It is easy to see that $R^{1} f_{*}^{\prime} \mathscr{O}_{Y}=0$. In fact, it fits in the following exact sequence

$$
0 \rightarrow R^{1} f_{*}^{\prime} \mathscr{O}_{Y} \rightarrow R^{1} h_{*} \mathscr{O}_{Z} \rightarrow f_{*}^{\prime} R^{1} g^{\prime} \mathscr{O}_{Z}
$$

Since Y^{\prime} is smooth hence Y^{\prime} has a rational resolution. Now Z is another resolution of Y^{\prime}. By the above argument, we can conclude that
$R^{1} g_{*}^{\prime} \mathscr{O}_{Z}=0$. Apply the Leray spectral sequence to $p+q=2$. We see that $R^{2} f_{*}^{\prime} \mathscr{O}_{Y}=0$. Hence $R^{2} g_{*}^{\prime} \mathscr{O}_{Z}=0$. By induction, we conclude that $R^{p} f_{*}^{\prime} \mathscr{O}_{Y}=0$ for $p>0$.

This shows that rational resolution is well-defined.
Proposition 1.13. Let $f: Y \rightarrow(X, o)$ be a resolution of a rational surface singularity. Then $\chi\left(\mathscr{O}_{D}\right) \leq 1$.

Proof. Since (X, o) is rational and normal, then $H^{1}\left(\mathscr{O}_{D}\right)=H^{1}\left(\mathscr{O}_{Y}\right)=$ 0 . Therefore, $\chi\left(\mathscr{O}_{D}\right) \leq 1$.

What if $R^{i} f_{*} \mathscr{O}_{Y} \neq 0$?
Let $f: Y \rightarrow(X, o)$ be a resolution. Then $R^{1} f_{*} \mathscr{O}_{Y}$ is a finite length module supported at the origin. It is also an invariant of the singularity, called the geometric genus of o (See Kollár). Since smooth varieties has rational resolution, then $R^{1} g_{*}^{\prime} \mathscr{O}_{Z}=0$. Therefore, the Leray spectral sequence tells us that $R^{1} f_{*} \mathscr{O}_{Y}=R^{1} f_{*}^{\prime} \mathscr{O}_{Y}$.

Reference: Miled Reid, Park city Lecture notes.
Since $R^{1} f_{*} \mathscr{O}_{Y}$ is supported at the origin, by Serre-Grothendieck spectral sequence, we know that $H^{1}\left(\mathscr{O}_{Y}\right)=R^{1} f_{*} \mathscr{O}_{Y}$. To compute higher direct image sheaves, besides the definition, we have the formal function theorem.

Theorem 1.14. Let $f: Y \rightarrow X$ be a proper morphism and S be a subvariety of X. Then for any coherent sheaf \mathscr{F} on Y, we have

$$
\widehat{R^{p} f_{*} \mathscr{F}}=\lim _{k} R^{p} f_{*}\left(\mathscr{F} / I^{k} \mathscr{F}\right),
$$

where I is the defining ideal of S in Y and the left hand side is the completion along $I \mathscr{O}_{Y}$.

Remark 1.15. The left hand side in fact is isomorphic to $R^{p} f_{*} \mathscr{F}$ since $R^{p} f_{*} \mathscr{F}$ is coherent. A completion of a finitely generated module M
over a Noetherian ring R can be obtained by extension of scalars: $\hat{M}=$ $M \otimes_{R} \hat{R}$.

By the formal function theorem, we see that there is an isomorphism

$$
H^{1}\left(O_{Y}\right)=\lim _{\operatorname{Supp}(D) \subset f^{-1}(o)} H^{1}\left(\mathscr{O}_{D}\right)
$$

On the other hand, we have morphism $H^{1}\left(\mathscr{O}_{Y}\right) \rightarrow H^{1}\left(\mathscr{O}_{D}\right)$. Therefore, there is a D such that $H^{1}\left(\mathscr{O}_{Y}\right) \cong H^{1}\left(\mathscr{O}_{D}^{\prime}\right)$ for all $D^{\prime} \geq D$.

Definition 1.16 (Cohomology cycle). Let $f: Y \rightarrow(X, 0)$ be a resolution of an isolates normal surface singularity (X, o). A divisor D supported on the exceptional locus is called a cohomology cycle if $H^{1}\left(\mathscr{O}_{Y}\right) \cong H^{1}\left(\mathscr{O}_{D}\right)$.

Theorem 1.17. There exists a unique minimal cohomology cycle.

The proof is similar to the proof of existence of minimal nef cycle.

Proof. Let $D=\sum d_{i} E_{i}$ and $D^{\prime}=\sum d_{i}^{\prime} E_{i}$ be two cohomology cycles. We claim that $D^{\prime \prime}=\min \left(D, D^{\prime}\right)=\sum \min d_{i}, d_{i}^{\prime} E_{i}$ is also a cohomology cycle. Write $D=D^{\prime \prime}+R_{1}$ and $D^{\prime}=D^{\prime \prime}+R_{2}$. Then R_{1} and R_{2} have no common components. Therefore, $I_{D \cap D^{\prime}}=\mathscr{O}_{X}\left(-D^{\prime \prime}\right) \otimes I_{\Sigma}$, where $\Sigma=R_{1} \cap R_{2}$.

We have the following exact sequences.

$$
0 \rightarrow I_{D \cup D^{\prime}} \rightarrow I_{D} \oplus I_{D^{\prime}} \rightarrow I_{D \cap D^{\prime}} \rightarrow 0
$$

which induces an exact sequence

$$
0 \rightarrow \mathscr{O}_{D \cup D^{\prime}} \rightarrow \mathscr{O}_{D} \oplus I_{D^{\prime}} \rightarrow \mathscr{O}_{D \cap D^{\prime}} \rightarrow 0
$$

Therefore, we have an exact sequence

$$
H^{1}\left(\mathscr{O}_{D \cup D^{\prime}}\right) \rightarrow H^{1}\left(\mathscr{O}_{D}\right) \oplus H^{1}\left(\mathscr{O}_{D^{\prime}}\right) \rightarrow H^{1}\left(\mathscr{O}_{D \cap D^{\prime}}\right) \rightarrow 0 .
$$

It is also easy to check that

$$
0 \rightarrow \mathscr{O}_{\Sigma}\left(-D^{\prime \prime}\right) \rightarrow \mathscr{O}_{D \cap D^{\prime}} \rightarrow \mathscr{O}_{D^{\prime \prime}} \rightarrow 0
$$

is exact by snake lemma. Therefore, $h^{1}\left(\mathscr{O}_{D^{\prime \prime}}\right) \geq h^{1}\left(\mathscr{O}_{D}\right)+h^{1}\left(\mathscr{O}_{D^{\prime}}\right)-$ $h^{1}\left(\mathscr{O}_{D \cap D^{\prime}}\right)=h^{1}\left(\mathscr{O}_{Y}\right)$. We conclude that $H^{1}\left(\mathscr{O}_{Y}\right) \rightarrow H^{1}\left(\mathscr{O}_{D^{\prime \prime}}\right)$ is an isomorphism.

Let $f: Y \rightarrow(X, o)$ be a resolution of a rational surface singularity. Assume that X is affine. Then $H^{1}\left(\mathscr{O}_{Y}\right)=0$. Moreover, $H^{2}\left(\mathscr{O}_{Y}\right)=0$. From the exponential sequce

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathscr{O}_{Y} \rightarrow \mathscr{O}_{Y}^{*} \rightarrow 0
$$

we see that

$$
\operatorname{Pic}(Y)=H^{1}\left(\mathscr{O}_{Y}^{*}\right)=H^{2}(Y, \mathbb{Z})=\bigoplus_{i=1}^{n} \mathbb{Z} \cdot L_{i}
$$

where L_{i} are divisors such that $L_{i} \cdot E_{j}=\delta_{i j}$. A divisor L on Y is then determined by the intersection numbers $a_{i}=L \cdot E_{i}$. Slightly move L_{i} to L_{i}^{\prime}, we get the same intersection number. Hence $\mathscr{O}_{Y}\left(L_{i}\right)$ is globally generated. A divisor L on Y is nef if and only if $a_{i} \geq 0$. Line bundles associated to nef divisors are globally generated. The nef cone $\operatorname{Nef}(Y)$ is $\sum \mathbb{Z}_{+} L_{i}$.

Let $f: Y \rightarrow(X, o)$ be a resolution of an isolated surface singularity. Denote the maximal ideal associated to o by \mathfrak{m}. Then $\mathfrak{m} \mathscr{O}_{Y}=$ $\mathscr{O}_{Y}\left(-Z_{\max }\right) \otimes I_{\Sigma}$ where $\operatorname{dim} \Sigma=0$. Morevore, $-Z_{\max }$ is nef and $Z_{\text {max }} \geq Z_{\text {nef }}$.

Definition 1.18 (Fundamental cycle). The cycle $Z_{\max }$ is called the fundamental cyle.

Remark 1.19. In Miles Reid's book, $Z_{\max }$ is called the fiber cycle.
Theorem 1.20 (Artin). Assume that (X, o) is an rational surface singularity. Then
(1) $\mathfrak{m} \mathscr{O}_{Y}=\mathscr{O}_{Y}\left(-Z_{\max }\right)$, i.e. $I_{\Sigma}=\mathscr{O}_{Y}$. Moreover, $Z_{\max }=Z_{\text {nef }}$.
(2) $\mathfrak{m} / \mathfrak{m}^{2}=H^{0}\left(\mathscr{O}_{Z_{\max }}\left(-Z_{\text {max }}\right)\right.$ and the embedding dimension of o is $\operatorname{dim} \mathfrak{m} / \mathfrak{m}^{2}=-Z_{\text {max }}^{2}+1$.
(3) The multiplicity of o is $-Z_{\max }^{2}$.

Proof. We may assume that X is affine. Since (X, o) is rational and $-Z_{\text {max }}$ is nef, then $\mathscr{O}_{Y}\left(-Z_{\max }\right)$ is globally generated, equivalently, $H^{0}\left(Y, \mathscr{O}_{Y}\left(-Z_{\max }\right)\right) \otimes \mathscr{O}_{Y} \rightarrow \mathscr{O}_{Y}\left(-Z_{\max }\right)$ is surjective. Notice that $\mathfrak{m}=H^{0}\left(Y, \mathscr{O}_{Y}\left(-Z_{\text {max }}\right)\right)$ and $\mathfrak{m} \mathscr{O}_{Y} \subset \mathscr{O}_{Y}\left(-Z_{\text {max }}\right)$. Therefore, $\mathfrak{m} \mathscr{O}_{Y}=$ $\mathscr{O}_{Y}\left(-Z_{\max }\right)$. Since $Z_{\max } \geq Z_{\text {nef }}$, hence $\mathfrak{m}=H^{0}\left(\mathscr{O}_{Y}\left(-Z_{\text {max }}\right)\right) \subset$ $H^{0}\left(\mathscr{O}_{Y}\left(-Z_{n e f}\right)\right)$. Therefore $H^{0}\left(\mathscr{O}_{Y}\left(-Z_{n e f}\right)\right)=\mathfrak{m}$. Since $\mathscr{O}_{Y}\left(-Z_{n e f}\right)$ is also globally generated, then $\mathfrak{m} \mathscr{O}_{Y}=\mathscr{O}_{Y}\left(-Z_{\text {nef }}\right)=\mathscr{O}_{Y}\left(-Z_{\text {max }}\right)$. Take the cohomology of the following short exact sequence

$$
0 \rightarrow \mathscr{O}_{Y}\left(-2 Z_{\max }\right) \rightarrow \mathscr{O}_{Y}\left(-Z_{\max }\right) \rightarrow \mathscr{O}_{Z_{\max }}\left(-Z_{\max }\right) \rightarrow 0 .
$$

Note that $H^{1}\left(\mathscr{O}_{Y}\left(-2 Z_{\max }\right)=0\right.$ and $H^{1}\left(\mathscr{O}_{Z_{\max }}\left(-Z_{\max }\right)=0\right.$ because $-Z_{\max }$ is nef and big. We then have the following short exact sequence
$0 \rightarrow \mathfrak{m}^{2}=H^{0}\left(\mathscr{O}_{Y}\left(-2 Z_{\max }\right) \rightarrow \mathfrak{m}=H^{0}\left(\mathscr{O}_{Y}\left(-Z_{\max }\right) \rightarrow H^{0}\left(\mathscr{O}_{Z_{\max }}\left(-Z_{\max }\right)\right) \rightarrow 0\right.\right.$.
The embedding dimension is given by
$h^{0}\left(\mathscr{O}_{Z_{\max }}\left(-Z_{\max }\right)\right)=\chi\left(\mathscr{O}_{Z_{\max }}\left(-Z_{\max }\right)\right)=-Z_{\max }^{2}+1-p_{a}\left(\mathscr{O}_{Z_{\max }}\right)=-Z_{\max }^{2}+1$.
Apply the same trick to $\mathfrak{m}^{k} / \mathfrak{m}^{k+1}$, we see that

$$
\operatorname{dim} \mathfrak{m}^{k} / \mathfrak{m}^{k+1}=h^{0}\left(\mathscr{O}_{Z_{\max }}\left(-k Z_{\max }\right)\right)=-k Z_{\max }^{2}+1
$$

Hence mult ${ }_{o} X=-Z_{\text {max }}^{2}$.

By Artin's theorem, we know that a rational surface singularity is a hypersurface singularity if $Z_{\max }^{2}=-2$.

1.2. Du Val singularities.

Definition 1.21. Let $f: Y \rightarrow(X, o)$ be a minimal resolution of an isolated surface singularity. Denote the fundamental cycle by Z. We say (X, o) is a Du Val singularity if $K_{Y} \cdot E=0$ for any exceptional curve E.

Theorem 1.22. An isolated surface singularity (X, o) is $D u$ Val if and only if (X, o) is a rational double point, equivalently a rational singularity such that $Z^{2}=-2$.

Proof. Assume that (X, o) is a rational double point. Then $K_{Y} \cdot Z=$ $2 p_{a}(Z)-2-Z^{2}=-2 \chi\left(\mathscr{O}_{Z}\right)-Z^{2}=0$. Because Y is minimal. We know that K_{Y} is nef. As the fundamental cycle, Z supported on all exceptional curves. Therefore, $K_{Y} \cdot E_{i}=0$.

Assume that (X, o) is a Du Val singularity. We need to show that $R^{1} f_{*} \mathscr{O}_{Y}=0$. By formal function theorem, it suffices to show that $H^{1}\left(\mathscr{O}_{D}\right)=0$ for all effective D supported on exceptional curves. We do this by induction. Write $\mathscr{O}_{Y}=\mathscr{O}_{Y}\left(K_{Y}+A\right)$. Then $A \cdot E=0$ for any exceptional curves E. Assume that $D=E$ is irreducible. Then $\left.\mathscr{O}_{D}=\left.\left(K_{Y}+A\right)\right|_{D}=K_{D}+(A-E) \mid\right) D$. Note that $\left.\operatorname{deg}((A-E) \mid) D\right)=$ $-D^{2} \geq 0$. Therefore,

$$
H^{1}\left(\mathscr{O}_{D}\right)=H^{1}\left(K_{E}+\left.(A-E)\right|_{E}\right)=H^{0}\left(-\left.(A-E)\right|_{E}\right)=0 .
$$

Now write $D=D^{\prime}+E$.

The classification of Du Val singularities are well known. The following are all the possible Du Val singularities.

$$
\begin{aligned}
A_{n}: & x^{2}+y^{2}+z^{n+1}=0, \\
D_{n}: & x^{2}+y^{2} z+z^{n-1}=0, \\
E_{6}: & x^{2}+y^{3}+z^{4}=0, \\
E_{7}: & x^{2}+y^{3}+y z^{3}=0, \\
E_{8}: & x^{2}+y^{3}+z^{5}=0 .
\end{aligned}
$$

1.3. Canonical model. Let X be a minimal surface of general type. Then K_{X} is nef and $K_{X}^{2}>0$. By Reider's theorem, which will be discussed later, $X_{\text {can }}=\operatorname{Proj} \oplus H^{0}\left(m K_{X}\right)$ is a surface. There is a canonical birational morphism $X \rightarrow X_{\text {can }}$. The curves being contracted are the curves C such that $C \dot{K}_{X}=0$. Therefore, $X_{\text {can }}$ has only Du Val singularities.
1.4. Gorenstein Singularities. Let X be a normal surface. We can a canonical sheaf ω_{X} by extending the canonical bundle $\mathscr{O}_{U}\left(K_{U}\right)$, where
U is the smooth locus of X. A normal variety X is Gorenstein if ω_{X} is a line bundle.

Example 1.23. Let S be the surface $x^{2}+y^{2}+z^{2}=0$. Then $\omega_{S} \cong$ $\mathscr{O}_{S}\left(\left.K_{\mathbb{A}^{3}}\right|_{S}\right) \otimes \mathscr{N}_{S}$.

Assume that $f: Y \rightarrow(X, o)$ is a minimal resolution. Since the intersection matrix is negative definite, there is a unique \mathbb{Q}-cycle $Z_{K}=$ $\sum a_{i} E_{i}$ such that $K_{Y} \cdot E_{i}=-Z_{K} \cdot E_{i}$ for any exceptional curve E_{i}. By negativity Lemma, Z_{K} is effective.

Proposition 1.24. Assume that (X, o) is a normal Gorenstein surface singularity. Let $f: Y \rightarrow(X, o)$ be the minimal resolution.
(1) K_{Y} is linear equivalent to an integral cycle $-Z_{K}=\sum a_{i} E_{i}$ where $a_{i} \geq 0$. Moreover, if $\mathscr{O}_{K_{Y}}$ is nontrivial, then $a_{i}>0$.
(2) $Z_{K}=Z_{\text {coh }}$.

Proof. (1) Choose an effective cycle $G=D+\sum b_{i} E_{i} \sim K_{Y}$, where the components of D are not f-exceptional. Then $f_{*} G=\bar{D} \sim$ $K_{X} \sim 0$. Now note that $f^{*} \bar{D} \sim 0$. So $K_{Y} \sim G-f^{*} f_{*} G=$ $-\sum a_{i} E_{i}$. We see that K_{Y} is linearly equivalent to $-\sum a_{i}^{\prime} E_{i}$. We know that K_{Y} is also numerical equivalent to $-\sum a_{i} E_{i}$. Since $\left(E_{i} \cdot E_{j}\right)$ is negative definite. So $a_{i}^{\prime}=a_{i}$ and $K_{Y} \sim-Z_{K}$.
(2) Now $\mathscr{O}_{Y}\left(-\sum a_{i} E_{i}\right)=\mathscr{O}_{Y}\left(-Z_{K}\right)=\mathscr{O}_{Y}\left(K_{Y}\right)$. Consider the short exact sequence

$$
0 \rightarrow \mathscr{O}_{Y}\left(-Z_{K}\right) \rightarrow \mathscr{O}_{Y} \rightarrow \mathscr{O}_{Z_{K}} \rightarrow 0 .
$$

By the Grauert-Riemannschneider Theorem, $R^{i} f_{*} \mathscr{O}_{Y}\left(K_{Y}\right)=0$ for all $i>0$. Therefore, $H^{1}\left(\mathscr{O}_{Y}\right)=R^{1} f_{*} \mathscr{O}_{Y} \rightarrow R^{1} f_{*} \mathscr{O}_{Z}=$ $H^{1}\left(\mathscr{O}_{Z}\right)$ is an isomorphism. So Z_{K} is a cohomology cycle. Since $Z_{\text {con }}$ is the unique minimal cohomology cycle, then $Z_{\text {coh }} \subseteq Z_{K}$. If $Z_{K}-Z_{\text {con }}$ is strictly effective, then we may write $Z_{K}=E+D$ such that E is an irreducible component and $Z_{\text {coh }} \subseteq D$. So
$H^{1}\left(\mathscr{O}_{D}\right) \cong H^{1}\left(\mathscr{O}_{Y}\right)$. We will show that this can not be the case. Consider the exact sequence

$$
0 \rightarrow \mathscr{O}_{E}(-D) \rightarrow \mathscr{O}_{Z_{K}} \rightarrow \mathscr{O}_{D} \rightarrow 0
$$

We want to show that $H^{1}\left(\omega_{Z_{K}}\right) \rightarrow H^{1}\left(\mathscr{O}_{D}\right)$ has non-trivial kernel. By Serre duality, $H^{1}\left(\mathscr{O}_{Z_{K}}\right)=H^{0}\left(\omega_{Z_{K}}\right)$ and $H^{1}\left(\mathscr{O}_{D}\right)=$ $H^{0}\left(\omega_{D}\right)$. Note that $\omega_{Z_{K}}=\left.\left(K_{Y}+Z_{K}\right)\right|_{Z_{K}}=\mathscr{O}_{Z_{K}}$ and $\omega_{D}=$ $\left.\left(K_{Y}+D\right)\right|_{D}=\mathscr{O}_{D}(-E)$. Now consider the exact sequence,

$$
0 \rightarrow \mathscr{O}_{D}(-E) \rightarrow \mathscr{O}_{Z_{K}} \rightarrow \mathscr{O}_{E} \rightarrow 0
$$

We see easily that $H^{0}\left(\omega_{D}\right) \rightarrow H^{0}\left(\omega_{Z_{K}}\right)$ is a nonzero map. This completes the argument.

Theorem 1.25. Assume that $f: Y \rightarrow(X, o)$ be a minimal resolution of a normal surface singularity. If K_{Y} is numerically equivalent to $-Z_{K}=\sum a_{i} E_{i}$ where $a_{i} \in \mathbb{Z}^{+}$and $Z_{K}=Z_{\text {con }}$, then (X, o) is a Gorenstein singularity.

Lemma 1.26. $\operatorname{Pic}\left(Z_{K}\right) \cong \operatorname{Pic}(Y)$

Proof. Note that $\operatorname{Supp}\left(Z_{K}\right)$ is a deformation retract of Y. Apply fivelemma to cohomolgy sequences of the exponential sequences of Y and Z_{K}, we get the isomorphism.

Lemma 1.27. $K_{Y} \cong \mathscr{O}_{Y}\left(-Z_{K}\right)$.

Proof. By our assumption, $L=K_{Y}+Z_{K}$ is numerically trivial. We only need to show that $\left.L\right|_{Z}=\omega_{Z}$ is trivial. Then by the previous lemma L is trivial. We will show that $\left.L\right|_{Z}$ is globally generated. If so, we will have a morphism $\left.\mathscr{O}_{Z} \rightarrow L\right|_{Z}$. Since $\left.L\right|_{Z}$ is numerically trivial, then $\left.\mathscr{O}_{Z} \rightarrow L\right|_{Z}$ must be an isomorphism. Write $Z_{K}=E+D$, where E is an irreducible component of Z_{K}. By applying snake lemma, we get the following exact sequence

$$
\left.\left.\left.0 \rightarrow \mathscr{O}_{Y}\left(K_{Y}+D\right)\right|_{D} \rightarrow L\right|_{Z} \rightarrow \omega_{Z}\right|_{E} \rightarrow 0 .
$$

Since Z_{K} is the minimal cohomology cycle, then $H^{1}\left(\mathscr{O}_{E}(-D)\right) \rightarrow$ $H^{1}\left(\mathscr{O}_{Z_{K}}\right)$ is a non-zero map. By Serre duality, $H^{0}\left(\mathscr{O}_{Z_{K}}\right) \rightarrow H^{0}\left(\left.\omega_{Z_{K}}\right|_{E}\right)$ have a non-zero map. Since ω_{Z} is numerically trivial. So $\left.\omega_{Z_{K}}\right|_{E}=\mathscr{O}_{E}$ and the section 1 of $H^{0}\left(\mathscr{O}_{E}\right)$ can be lifted to $\omega_{Z_{K}}$. This shows that $\omega_{Z_{K}}$ is generated by the section. We conclude that $\omega_{Z_{K}}=\mathscr{O}_{Z_{K}}$.

2. Flip constructed from linear algebra

Let $V=\mathbb{C}^{a+1}$ and $W=\mathbb{C}^{b+1}$ with $b \geq a \geq 0$. Set $H=$ $\operatorname{Hom}(V, W)=\mathbb{C}^{(a+1)(b+1)}$. Consider the subvariety $X=\{\varphi \in H \mid$ $\operatorname{rank} \varphi \leq 1\}$ of H. Outside the origin, actions of $G L(V)$ and $G L(W)$ will move $\varphi \in X$ transitively. Therefore, X has an isolated singularity at the origin. We will see that (X, o) has two natural resolutions.

One way to say that $\varphi \in X$ is rank one is a 1 -dimensional quotient space $\operatorname{Im}(\varphi)=V / U$ of some a-dimensional subspace $U \subset W$. Another way is that $\operatorname{Im}(\varphi)$ is a 1 -dimensional subspace of W.

Denote by $P=\mathbb{P}^{a}=\mathbb{P}(V)$. 1-dimensional quotients of V are classified by $\mathscr{O}_{P}(1)$. Let $Y=\mathscr{H} \operatorname{om}\left(\mathscr{O}_{P}(1), W \otimes \mathscr{O}_{P}\right)=W \otimes \mathscr{O}_{P}(-1)$. As the total space of a vector bundle Y is smooth. We have a natural morphism $f: Y \rightarrow X \subset H$, which maps a morphism $\mathscr{O}_{P}(1) \rightarrow W \otimes \mathscr{O}_{P}$ to the composition $V \otimes \mathscr{O}_{P} \rightarrow \mathscr{O}_{P}(1) \rightarrow W \otimes \mathscr{O}_{P}$. It is easy to see that the pre-image of a point outside the zero point of X is a single point. Hence $Y \rightarrow X$ is a resolution. In fact, $Y \rightarrow X$ collapse the zero section of Y. Denote the zero section by Z. Then the normal bundle \mathscr{N}_{Z} is isomorphic to $W \otimes \mathscr{O}_{P}(-1)$. Therefore, $\Omega_{Y / P} \cong \mathscr{N}_{Z}^{*}=W^{*} \otimes \mathscr{O}_{P}$ and $\left.K_{Y}\right|_{Z} \cong \mathscr{O}_{P}(-a-1)$. Hence $K_{Y}=\pi^{*} K_{P} \otimes K_{Y / P} \cong \pi^{*} \mathscr{O}_{P}(b-a)$ which is nef by our assumption.

Denote by $Q=\mathbb{P}^{b}=\mathbb{P}\left(W^{*}\right)$ and $Y^{\prime}=\mathscr{H}$ om $\left(V \otimes \mathscr{O}_{Q}, \mathscr{O}_{Q}(-1)\right)=$ $V \otimes \mathscr{O}_{Q}(-1)$. Then Y^{\prime} is also a resolution which collapse the zero section of Y^{\prime}. The morphism $Y^{\prime} \rightarrow X$ sent a morphism $V \otimes \mathscr{O}_{Q} \rightarrow \mathscr{O}_{Q}(-1)$ to the compostions $V \otimes \mathscr{O}_{Q} \rightarrow \mathscr{O}_{Q}(-1) \rightarrow W \otimes \mathscr{O}_{P}$. Similarly, we get $K_{Y^{\prime}} \cong \pi^{*} \mathscr{O}_{Q}(a-b)$ which is not nef.

This is an example of flips. Moreover, X has a rational singularity at the origin. Denote $T=H \times \mathbb{P}(W)$. T can be viewed as a trivial vector bundle over $\mathbb{P}(W)$ or a projective bundle of the trivial vector bundle $W \otimes \mathscr{O}_{H}$ over H. Let $p: T \rightarrow H$ and $q: T \rightarrow \mathbb{P}(W)$ be the two projections. Y is the vector bundle $V \otimes \mathscr{O}_{\mathbb{P}(W)}(-1)$. Consider the universal maps $p^{*} V \otimes \mathscr{O}_{T} \rightarrow p^{*} W \otimes \mathscr{O}_{T}$ on T. We also have the following exact sequence on T

$$
p^{*} W \otimes \mathscr{O}_{T} \rightarrow \mathscr{O}_{T}(1) \rightarrow 0 .
$$

Therefore, V can be identified as the zero locus of a section of $p^{*} V \otimes$ $\mathscr{O}_{T}(-1)$. This will give a resolution of \mathscr{O}_{Y}. By chasing the resolution, we can prove that $R^{i} p_{*} \mathscr{O}_{Y}=0$ for $i>0$.

3. Singularities of theta divisors

Let C be a smooth projective curve of genus g. We denote the d-th symmetric product of C by $C^{(d)}$. Let $\operatorname{Pic}^{d}(C)$ be the degree d component of the Picard group $\operatorname{Pic}(C)$. Set $W_{d}^{r}=\left\{[L] \in \operatorname{Pic}^{d}(C) \mid\right.$ $\left.h^{0}(L)>r\right\}$. There is a morphism

$$
\begin{aligned}
\varphi: C^{(d)} & \rightarrow W_{d}^{0} \subset \operatorname{Pic}^{d}(C) \\
D=\sum_{i=1}^{d} p_{i} \in C^{(d)} & \mapsto\left[\mathscr{O}_{C}(D)\right] .
\end{aligned}
$$

Assume that L is a line bundle on C such that $r=h^{0}(L)>0$. The fiber

$$
\varphi^{-1}([L])=\left\{D \mid D \geq 0 \text { and } \mathscr{O}_{X}(D) \sim L\right\}=\mathbb{P}\left(H^{0}(L)^{*}\right) \cong \mathbb{P}^{r-1}
$$

When $\operatorname{deg} L=g-1$, $\chi(L)=h^{0}(L)-h^{1}(L)=\operatorname{deg} L+1-g=0$. So $h^{0}(L)=h^{0}\left(K_{C}-L\right)$. Denote by $\Theta=\varphi\left(C^{(g-1)}\right)$ which is called the theta divisor. For general $L, h^{0}(L)=h^{1}(L)=1$. (??? Why?). This says that $\varphi: C^{(g-1)} \rightarrow \Theta$ is birational.

Theorem 3.1 (Mumford).

$$
\operatorname{dim} W_{g-1}^{r} \leq(g-1)-2 r-1
$$

Let $\Sigma=\left\{x \in C^{(g-1)} \mid \operatorname{dim} \varphi^{-1}(\varphi(x)) \geq 1\right\}$. By Mumford's theorem, we know that that $\operatorname{dim} \Sigma \leq g-3$. Hence φ is a small resolution.

The theta divisor is not smooth in general.
Theorem 3.2 (Riemann).

$$
\operatorname{mult}_{[L]} \Theta=\operatorname{dim} H^{0}(L)
$$

Riemann singularity theorem tells us Θ has the singular locus $W_{(g-1)}^{1}$.

However, singularities of Θ are not to bad. The following theorem tells us the Θ has rational singularities.

Theorem 3.3 (Kempf). The theta divisor Θ has rational singularities.

The proof is not very difficult. We will use the fact that Θ is a hypersurface.

Proof. We want to show that $R^{i} \varphi_{*} \mathscr{O}_{C^{(g-1)}}=0$ for $i>0$. Since Θ is a hypersurface, then K_{Θ} is a line bundle. Because φ is a small resolution, we see that $K_{C^{(g-1)}}=\varphi^{*} K_{\Theta}$. By Grauert-Riemannshneider theorem and projective formula, we see that

$$
R^{i} \varphi_{*} \mathscr{O}_{C^{(g-1)}}=R^{i} \varphi_{*}\left(K_{C^{(g-1)}} \otimes \varphi^{*}\left(K_{\Theta}^{-1}\right)\right)=R^{i} \varphi_{*} K_{C^{(g-1)}} \otimes K_{\Theta}^{-1}=0
$$

Using the fact that Θ is a hypersurface, in fact a determinantal variety, at a point $[L], \Theta$ can be defined by a polynomial $f=f_{m}+$ $f_{m+1}+\cdots$, where f_{m} is a degree m homogenious polynomial. Blowing up $[L]$, the tangent cone is define by f_{m} in \mathbb{P}^{g-1}. Let $\Lambda=\varphi^{-1}([L]) \cong$ $\mathbb{P}^{r} \subset C^{(g-1)}$ and E be the exceptional divisor of the blowing up ψ : $B l_{\Lambda} C^{(g-1)} \rightarrow C^{(g-1)}$. We know that φ is a rational resolution, so is the composition $\varphi \circ \psi$. Therefore, $\operatorname{dim}_{k} \mathfrak{m}^{t+1} / \mathfrak{m}^{t}=h^{0}\left(\mathscr{O}_{E}(-t E)\right)$, where \mathfrak{f} is the maximal ideal of $[L]$. So we get mult ${ }_{[L]} \Theta=c_{1}\left(\mathscr{O}_{E}(-E)\right)^{g-2}$. Note
that the exceptional divisor E is the projectivization of the normal bundle $N=N_{\Lambda / C^{(g-1)}}$. So $\mathscr{O}_{E}(-E)=\mathscr{O}_{\mathbb{P}(N)}(1)$. On $\mathbb{P}(N)$, we have the universal sequence

$$
0 \rightarrow \Omega_{N / \Lambda}^{1}(1) \rightarrow \psi^{*} N^{*} \rightarrow \mathscr{O}_{P}(1) \rightarrow 0 .
$$

So $c_{1}\left(\mathscr{O}_{P}(1)\right)=\psi^{*}\left(c_{1}\left(N^{*}\right)\right)$ and $c_{1}\left(\mathscr{O}_{E}(-E)\right)^{g-2}=\psi^{*}\left(c_{1}\left(N^{*}\right)\right)^{(g-2)}$. Now we compute the normal bundle N. Consider the product $C \times \Lambda$, where $\Lambda=\mathbb{P}\left(H^{0}(L)^{*}\right)$. Let $p: C \times \Lambda \rightarrow C$ and $q: C \times \Lambda \rightarrow \Lambda$ be the two projections. Then $H^{0}\left(p^{*} L \otimes q^{*} \mathscr{O}_{\Lambda}(1)\right)=H^{0}(L) \otimes H^{0}\left(\mathscr{O}_{\Lambda}(1)\right)=H^{0}(L) \otimes$ $H^{0}(L)^{*}=\operatorname{End}\left(H^{0}(L)\right)$. Let $s \in H^{0}\left(p^{*} L \otimes q^{*} \mathscr{O}_{\Lambda}(1)\right)$ be the section corresponding to the identity element in $E n d H^{0}(L)$ and $D=\operatorname{div}(s)$ be the universal divisor. We then have the following exact sequence

$$
0 \rightarrow \mathscr{O}_{C \otimes \Lambda} \rightarrow p^{*} L \otimes q^{*} \mathscr{O}_{\Lambda}(1) \rightarrow \mathscr{O}_{D}(D) \rightarrow 0
$$

Apply q_{*}, we have the exact sequence
$0 \rightarrow \mathscr{O}_{\Lambda} \rightarrow H^{0}(L) \otimes \mathscr{O}_{\Lambda}(1) \rightarrow q_{*} \mathscr{O}_{D}(D) \rightarrow H^{1}\left(O_{C}\right) \otimes \mathscr{O}_{\Lambda} \rightarrow H^{1}(L) \otimes \mathscr{O}_{\Lambda}(1) \rightarrow 0$,
because $D \rightarrow \Lambda$ is a finite morphism and $R^{1} q_{*} \mathscr{O}_{D}(D)=0$. We observe that the cockerel of $\mathscr{O}_{\Lambda} \rightarrow H^{0}(L) \otimes \mathscr{O}_{\Lambda}(1) \cong T_{\Lambda}$ and $q_{*} \mathscr{O}_{D}(D) \cong$ $T_{C^{(g-1) \mid \Lambda}}$. (Why the second equality?????) So we obtain the following exact sequence

$$
0 \rightarrow N \rightarrow H^{1}\left(O_{C}\right) \otimes \mathscr{O}_{\Lambda} \rightarrow H^{1}(L) \otimes \mathscr{O}_{\Lambda}(1) \rightarrow 0
$$

Hence we get $c_{1}\left(N^{*}\right)=c_{1}\left(\left(\mathscr{O}_{\Lambda}(r+1)\right)\right)$. Therefore,

$$
\operatorname{mult}_{[L]} \Theta=c_{1}\left(\mathscr{O}_{E}(-E)\right)^{g-2}=r+1=h^{0}(L)
$$

$\left(\right.$ Why $\left(\psi^{*} c_{1}\left(\left(\mathscr{O}_{\Lambda}(r+1)\right)\right)\right)^{g-2}=r+1$????)

4. Singularities in higher dimension

Recall that a normal surface singularity (X, o) is Du Val, if there is a minimal resolution $f: Y \rightarrow X$ such that $K_{Y} \cdot E_{i}=0$, equivalently, $K_{Y}=f^{*} K_{X}$.

The analogue in higher dimension is canonical singularities. Let $f: Y \rightarrow X$ be a \log resolution, i.e. Y is smooth, f is proper, birational and the exceptional divisors are simple normal crossing. Write $K_{Y}-f^{*} K_{X}=\sum a_{i} E_{i}$, where a_{i} is called the log discrepancy of X along E_{i}. We say that X has canonical singularities, if all $a_{i}^{\prime} s$ are non-negative.

Theorem 4.1. Assume that X is an algebraic variety with only canonical singularities and $f: Y \rightarrow X$ is a log resolution of X. Then

$$
\bigoplus_{m=0}^{+\infty} H^{0}\left(\mathscr{O}_{X}\left(m K_{X}\right)\right)=\bigoplus_{m=0}^{+\infty} H^{0}\left(\mathscr{O}_{Y}\left(m K_{Y}\right)\right) .
$$

Proof. Let E be the exceptional divisor. Notice that $f_{*} \mathscr{O}_{E}(E)=0$. Apply f_{*} to the exact sequence

$$
0 \rightarrow \mathscr{O}_{Y} \rightarrow \mathscr{O}_{Y}(E) \rightarrow \mathscr{O}_{E}(E) \rightarrow 0,
$$

we see that $f_{*} \mathscr{O}_{Y}(E)=O_{Y}$. Apply the projective formula, we obtain the equality.

Definition 4.2 (Analytic version). Let X be a smooth affine variety and $I_{Z}=<f_{1}, f_{2}, \ldots, f_{r}>$ be the ideal of a subvariety Z. For an positive number λ, the multiplier ideal of Z of weight λ is defined as

$$
\mathscr{I}\left(I_{Z}^{\lambda}\right)=\left\{g \in \mathscr{O}_{X} \left\lvert\, \frac{|g|^{2}}{\left(\sum\left|f_{i}\right|^{2}\right)^{\lambda}} \in \mathrm{L}_{l o c}^{1}\right.\right\} .
$$

Example 4.3. Let $\mathscr{A}=<z^{a}>$ be an ideal in $k[z]$. The integral $\int\left|z^{b}\right| \mathrm{d} x \mathrm{~d} y=\int r^{b} r \mathrm{~d} r \mathrm{~d} \theta$ exists if and only if $b+1>-1$. Therefore, $\mathscr{I}\left({ }^{\lambda}\right)=<z^{[\lambda a]}>$. More general, $\mathscr{I}\left(\left(z_{i}^{a_{1}} \cdot z_{n}^{a_{n}}\right)^{\lambda}\right)=\left(\left(z_{i}^{\lambda a_{1}} \cdot z_{n}^{\lambda a_{n}}\right)\right)$.

Let $f: Y \rightarrow X$ be a \log resolution of the pair (X, Z), where Z is a subvariety of X. The support $\operatorname{Supp}\left(\operatorname{Exc}(f)+f^{-1}(Z)\right)=E_{1} \cup E_{2} \cup$ $\cdots \cup E_{r}$ is simple normal crossing. Let z_{1}, \cdots, z_{n} be local coordinates of X and w_{1}, \cdots, w_{n} be local coordinates of Y. Then

$$
\mathrm{d} w_{1} \cdots \mathrm{~d} w_{n} \mathrm{~d} \bar{w}_{1} \cdots \mathrm{~d} \bar{w}_{n}=|J a c(f)|^{2} d z_{1} \cdots \mathrm{~d} z_{n} \mathrm{~d} \bar{z}_{1} \cdots \mathrm{~d} \bar{z}_{n} .
$$

Write relative canonical divisor $K_{Y / X}=\operatorname{div}(\operatorname{det}(\operatorname{Jac}(f)))=\sum k_{i} E_{i}$ and $I_{z} \cdot \mathscr{O}_{Y}=\mathscr{O}_{Y}\left(-\sum b_{i} E_{i}\right)$. Then $g \in \mathscr{I}\left(I_{Z}^{\lambda}\right)$ if and only if $\operatorname{ord}_{E_{i}} g \geq$ $\left[\lambda b_{i}\right]-k_{i}$. So we can define multiplier ideal sheaves algebraically.

Definition 4.4 (Algebraic version). Let $f: Y \rightarrow X$ be a log resolution of the pair (X, Z). Then the multiplier ideal sheaf of Z of weight λ is

$$
\mathscr{I}\left(I_{Z}^{\lambda}\right)=f_{*} \mathscr{O}_{Y}\left(K_{Y / X}-[\lambda E]\right),
$$

where E is the exceptional locus, i.e. $\mathscr{O}_{Y}(-E)=I_{Z} \cdot \mathscr{O}_{Y}$.
Definition 4.5. Let (X, D) be a pair where D is an effective \mathbb{Q}-divisor. The pair (X, D) is said to have

- Kawamata log terminal (kit) singularity if and only if the multipler ideal sheaf $\mathscr{I}(X, D)=\mathscr{O}_{X}$, equivalently, $k_{i}-b_{i}>-1$;
- terminal singularity if and only if $k_{i}-b_{i}>0$;
- canonical singularity if and only if $k_{i}-b_{i} \geq 0$;
- log canonical singularity if and only if $k_{i}-b_{i} \geq 0$.

Theorem 4.6 (Kawamata-Viehweg vanishing theorem). Let (X, Δ) be a pair, where $\Delta=\sum \delta_{i} E_{i}$ is simple normal crossing and X is smooth. Let A be a nef and big \mathbb{Q}-divisor such that $K_{X}+A+\Delta$ is numerically equivalent to a line bundle L. Then $H^{i}(L)=0$ for $i>0$.

Theorem 4.7 (Nadel vanishing theorem). Let X be a smooth variety and D be a \mathbb{Q}-divisor on X. Assume that L is an integral divisor such that $L-D$ is nef and big. Then

$$
H^{i}\left(\mathscr{O}_{X}\left(K_{X}+L\right) \otimes \mathscr{I}(D)\right)=0, \text { for all } i>0
$$

where $\mathscr{I}(D)$ is the multiplier ideal sheaf of D.

Let A be an abelian variety of dimension g and Θ be a line bundle on A. Then the following are equivalent
(1) $c_{i}(\Theta)^{g}=g!$,
(2) $h^{0}(\Theta)=1$,
(3) The morphism $\varphi_{\Theta}: A \rightarrow \operatorname{Pic}^{0} A=A^{*}$ given by $\varphi_{\Theta}(x)=T_{x} \Theta \otimes$ Θ^{-1}, where T_{x} is the translation by x, is an isomorphism.

Definition 4.8. An abelian variety A together with a line bundle Θ satisfying one of the equivalent conditions is called a principal polarized abelian variety (p.p.a.v. for short), denoted by (A, Θ).

Theorem 4.9. A p.p.a.v. (A, Θ) is log canonical if and only if the multiplier ideal sheaf $\mathscr{I}((1-\varepsilon) \Theta)=\mathscr{O}_{A}$ for any $\varepsilon>0$.

We need the following lemma.
Lemma 4.10. Let (A, Θ) be a p.p.a.v. and Z be a closed subscheme of A. If $H^{0}\left(I_{Z} \otimes \Theta \otimes P\right) \neq 0$ for all $P \in \operatorname{Pic}^{0}(A)$, then $Z=\emptyset$.

Proof. Since (A, Θ) is p.p.a.v., then $\Theta \otimes P=T_{x} \Theta$ for some $x \in A$. By the assumption, $H^{0}\left(I_{Z} \otimes \Theta \otimes P\right) \neq 0$, for all P. Therefore, $Z \in T_{x} \Theta$ for all $x \in A$. However, $\cap T_{x} \Theta=\emptyset$ which forces Z to be empty.

Proof of Kollar's theorem. Assume for the contradiction that $\mathscr{I}((1-$ $\varepsilon) \Theta) \neq O_{A}$ for some ε. Let Z be the subvariety such that the ideal sheaf $I_{Z}=\mathscr{I}\left((1-\varepsilon)\right.$. It is clear that $H^{0}\left(I_{Z} \otimes \Theta\right) \neq 0$. Since Θ is nef and big, then $H^{i}\left(I_{Z} \otimes \Theta \otimes P\right)=0$ for all $i>0$ and $P \in \operatorname{Pic}^{0}(A)$ by Nadel vanishing theorem. Therefore, $\chi\left(I_{Z} \otimes \Theta\right)>0$. Since $P \in \operatorname{Pic}^{0}(A)$, then $\chi\left(I_{Z} \otimes \Theta \otimes P\right)>0$ which implies that $H^{0}\left(I_{Z} \otimes \Theta \otimes P\right) \neq 0$. So we see that $Z=\emptyset$.

Theorem 4.11 (Ein-Lazarsfeld). Assume that (A, Θ) is a p.p.a.v. and Θ is irreducible. If Θ has canonical singularities then Θ has rational singularities.

5. Adjoint Linear systems on surfaces

Conjecture 5.1 (Fujita). Let X be a smooth projective variety of dimension n and A be an ample divisor on X. Then
(1) $K_{X}+(n+1) A$ is base-point-free.
(2) $K_{x}+(n+2) A$ is very ample.

For surfaces, Reider proved the conjecture. The base-point-freeness of $K_{X}+(n+1) A$ in 3 and 4 dimensional was proved by Ein-Lazarsfeld and Kawamata respectively. The conjecture is open for higher dimensional varieties.

Reider's proof uses Bogomolov unstability theorem
Theorem 5.2 (Bogomolov). Let \mathscr{E} be a rank 2 vector bundle on a smooth projective surface X. The the following are equivalent
(1) $c_{1}^{2}(E)-4 c_{2}(E)>0$.
(2) Let $L=\operatorname{det}(\mathscr{E})$. There exists a divisor B, a 0-dimensional subscheme $W \subset X$ and an exact sequence

$$
0 \rightarrow \mathscr{O}_{X}(L-B) \rightarrow \mathscr{E} \rightarrow I_{W} \otimes \mathscr{O}_{X}(B) \rightarrow 0
$$

such that $(L-2 B)^{2}>4 \operatorname{deg} W$ and $(L-2 B) \cdot H>0$ for any ample divisor H.

For higher dimensional variety, so far we don't have any analogue of Bogomolov's theorem. The proofs of Ein-Lazarsfeld and Kawamata use multiplier ideal sheaves and Kawamata-Viehweg vanishing theorem.

Theorem 5.3 (Reider). Let X be a smooth projective surface and A be a nef and big divisor on X. Assume that $A^{2}>4$, then the linear system $\left|K_{X}+A\right|$ is base point free at a point $p \in X$, unless there is a curve B passing through p such that
(1) $B^{2}=-1$ and $\left(K_{X}+A\right) \cdot B=0$, or
(2) $B^{2}=0$ and $\left(K_{X}+A\right) \cdot B=1$.

Proof. Write $L=K_{X}+A$. Consider the exact sequence

$$
\left.0 \rightarrow \mathscr{O}_{X}(L) \otimes I_{p} \rightarrow \mathscr{O}_{X}(L) \rightarrow \mathscr{O}_{X}(L)\right|_{p} \rightarrow 0
$$

where I_{p} is the ideal sheaf of p in \mathscr{O}_{X}. Since A is nef and big, then $H^{1}\left(\mathscr{O}_{X}(L)\right)=0$. The obstruction of $|L|$ being base point free at p is in $H^{1}\left(\mathscr{O}_{X}(L) \otimes I_{p}\right)$. By Serre duality, we have
$\left.\left(H^{1}\left(\mathscr{O}_{X}(L) \otimes I_{p}\right)\right)^{*} \cong \operatorname{Ext}^{1}\left(\mathscr{O}_{X}(L) \otimes I_{p}, \mathscr{O}\right) X\left(K_{X}\right)\right)=\operatorname{Ext}^{1}\left(\mathscr{O}_{X}(A) \otimes I_{p}, \mathscr{O}_{X}\right)$.
If $|L|$ is not base point free at p, then there is an nonzero element $\eta \in \operatorname{Ext}^{1}\left(\mathscr{O}_{X}(A) \otimes I_{p}, \mathscr{O}_{X}\right)$. So we have an extension

$$
0 \rightarrow \mathscr{O}_{X} \rightarrow \mathscr{E} \rightarrow \mathscr{O}_{X}(A) \otimes I_{p} \rightarrow 0
$$

It is easy to check that $c_{1}(E)^{2}-4 c_{2}(E)=A^{2}-4>0$. By Bogomolov theorem, we have an exact sequence

$$
0 \rightarrow \mathscr{O}_{X}(A-B) \rightarrow \mathscr{E} \rightarrow \mathscr{O}_{X}(B) \otimes I_{W} \rightarrow 0
$$

such that $(A-2 B)^{2}>4$ and $(A-2 B) \cdot H>0$ for any ample divisor H. Observe that the composition of morphism $\mathscr{O}_{X}(A-B) \rightarrow \mathscr{E} \rightarrow$ $\mathscr{O}_{X}(A) \otimes I_{p}$ is nontrivial. So we see that $H^{0}\left(\mathscr{O}_{X}(B) \otimes I_{p}\right) \neq 0$. Then there is an effective divisor D linearly equivalent to B and passing through p. Since $\left.c_{2}(\mathscr{E})\right)=1$. Then $(A-D) \cdot D+\operatorname{deg} W=1$. To prove the theorem, it suffices to show that $(A-D) \cdot D=1$ and $D^{2} \leq 0$.

