
LECTURES ON SINGULARITIES AND ADJOINT
LINEAR SYSTEMS

LAWRENCE EIN

Abstract.

1. Singularities of Surfaces

Let (X, o) be an isolated normal surfaces singularity. The basic

philosophy is to replace the singularity by a manifold. This procedure

is the resolution of singularities.

Definition 1.1. Let (X, o) be a normal surface singularity. A resolu-

tion of the singularity (X, o) is a proper birational morphism f : Y →
X, where Y is smooth. The set f−1(o) = E1 ∪ · · · ∪ En is called the

exceptional divisor.

Remark 1.2. Since X is normal, then f−1(o) is connected, hence has

no isolated points. This implies that Ei are distinct irreducible curves.

Theorem 1.3. The intersection matrix
(

(Ei · Ej)
)

is negative definite,

where Ei are the exaction curves.

Proof. We only need to show that for any non-trivial divisor D =∑
aiEi, D

2 < 0. Assume for contradiction that D2 ≥ 0. We will reduce

to that D is effective. Write D = A−B such that A and B are effective

and have no common components. Then D2 = A2 − 2A · B + B2 ≥ 0.

Since A ·B ≥ 0, hence A2 ≥ 0 or B2 ≥ 0. Assume that A2 ≥ 0. More-

over, we may assume that X and Y are projective. Take an ample

divisor H on X. Then f ∗H2 = H2 > 0 and A · f ∗H = 0. By Hodge

index theorem, the intersection matrix over H⊥ is negative definite.

This is a contradiction. �
1
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Definition 1.4. A divisor D on a projective variety X is called nef

(numerically effective) if D · C ≥ 0 for any curve C on X. We say X

is minimal if the canonical divisor KX is nef.

In higher dimension, to run the MMP, we will encounter singular-

ities. But the singularities are not too bad.

Theorem 1.5. Let ϕ : Y 99K X be a proper birational map. If X is

minimal, then ϕ is a morphism.

Definition 1.6. Let f : Y → X be a proper birational morphism. We

say that a divisor D is f -nef if D · C ≥ 0 for any f -exceptional curves

C.

Lemma 1.7 (Negativity Lemma). Let f : Y → X be a proper bira-

tional morphism with exceptional divisor Ei. If the divisor D =
∑
aiEi

is a f -nef divisor, then −D is effective.

Proof. We will first proof the case that X and Y are surface. Write

D = A−B where A and B are effective divisors and have no common

components. Since D is f -nef, hence D · A = A2 − A · B ≥ 0. On the

other hand, A2 ≤ 0 and A · B ≥ 0. Therefore, A2 − A · B ≤ 0. This

implies that A = 0. Therefore −D = B is effective.

For higher dimensional case, we may cut X by n − 3 general hy-

persurface to reduce to the surface case. �

Proof of the Theorem. Take a resolution of the birational map ϕ. We

get the a variety Z and two birational morphisms f : Z → Y and

g : Z → X. We will use the nefness of KX to show that no such

resolution is needed. Write

KZ = f ∗KY +
∑

aiEi +
∑

fjFi

= g∗KX +
∑

a′iEi +
∑

gkGk,

where Ei are f - and g-exceptional divisors, Fj are f -exceptional but not

g-exceptional divisors and Gk are g-exceptional but not f -exceptional
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divisor. Then ai, a
′
i, fj and gk are nonnegative. Consider the difference

(g∗KX +
∑

a′iEi +
∑

gkGk)− (f ∗KY +
∑

aiEi +
∑

fjFi) = 0.

We get

g∗KX − f ∗KY +
∑

gkGk =
∑

fjFi +
∑

(ai − a′i)Ei.

Note that the left hand side is f -nef since KX is nef and Gk are not

f -exceptional. Then by Negativity Lemma, −
∑
fjFi +

∑
(a′i − ai)Ei

must be nef. Hence fj must be zero and a′i ≥ ai. In other words, there

is no f -exceptional but not g-exceptional divisors. Hence, there is no

blowing up of ϕ needed. Therefore, ϕ : Y → X is a morphism. �

Let X be a smooth projective variety. Denote by N1(X)R the

space of 1-cycles of X modulo numerical equivalence. It is know that

N1(X) is a finite dimensional space. Denote by NE1(X) the subspace

of effective curves.

Theorem 1.8 (Cone Theorem).

NE1(X) = NE1(X)KX≥0 +
∑

R+Ci,

where Ci are rational curves such that −KX ·Ci ≤ dimX+1. Moreover,

Ci’s form a countable collection.

Those Ci’s a

Assume that X is a surface. Then

(1) if −KX ·Ci = 1 then C2
i = −1 which implies that Ci is a smooth

(-1)-curve.

(2) if −KX · Ci = 2 then C2
i = 0 which implies that X is a ruled

surface.

(3) if −KX · Ci = 3 then X = P2.

Definition 1.9. Let f : Y 2 → (X2, o) be a resolution of an isolated

normal surface singularity and f−1(o) = E1 ∪ · · · ∪ En. A effective
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cycle Znef =
∑
aiEi is called a minimal nef cycle, if −Znef is nef and

Znef ≤ D for any effective cycle D =
∑
diEi such that −D is nef.

Proposition 1.10. Znef is well-defined and unique.

Proof. Let D =
∑
diEi and D′ =

∑
d′iEi be two effective cycles such

that−D and−D′ are nef. DefineD′′ = Min(D,D′) =
∑

min(di, d
′
i)Ei.

We claim that −D′′ is nef. Write D = D′′ + R1 and D′ = D′′ + R2.

Then R1 and R2 have no common components. Therefore any excep-

tional curve Ei can appear in at most one of the two cycles R1 and R2.

Without lose of generality, we assume that Ei does not appear in R1.

Then D′′ · Ei = D · Ei −R1 · Ei ≤ 0. Therefore −D′′ is nef. �

1.1. Rational singularities.

Definition 1.11 (Rational Singularity). A morphism f : Y → X is

said to be a rational resolution if Y is smooth and f is a proper and

birational morphism such that Rif∗OY = 0 for i > 0.

Proposition 1.12. Let f : Y → X be a rational resolution and f ′ :

Y ′ → X be another resolution. Then f ′ : Y ′ → X is also a rational

resolution.

Proof. We have a birational map ϕ : Y 99K Y ′. Successively Blowing up

the undefined locus of ϕ, we get a variety Z and two proper birational

morphisms g : Z → Y and g′ : Z → Y ′ such that h := f ◦ g = f ′ ◦ g′.
Since g is the composition of blowing-ups. Then Rqg∗(OZ) = 0 for

q > 0. Apply the Leray spectral sequence

Ep,q
2 = Rpf∗(R

qg∗(F ))⇒ Rp+q(f ◦ g)∗(F ).

It follows that Rih∗OZ = 0 for i > 0. Apply the Leray spectral sequence

to f ′ ◦ g′. It is easy to see that R1f ′∗OY = 0. In fact, it fits in the

following exact sequence

0→ R1f ′∗OY → R1h∗OZ → f ′∗R
1g′OZ .

Since Y ′ is smooth hence Y ′ has a rational resolution. Now Z is an-

other resolution of Y ′. By the above argument, we can conclude that
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R1g′∗OZ = 0. Apply the Leray spectral sequence to p + q = 2. We see

that R2f ′∗OY = 0. Hence R2g′∗OZ = 0. By induction, we conclude that

Rpf ′∗OY = 0 for p > 0. �

This shows that rational resolution is well-defined.

Proposition 1.13. Let f : Y → (X, o) be a resolution of a rational

surface singularity. Then χ(OD) ≤ 1.

Proof. Since (X, o) is rational and normal, then H1(OD) = H1(OY ) =

0. Therefore, χ(OD) ≤ 1. �

What if Rif∗OY 6= 0?

Let f : Y → (X, o) be a resolution. Then R1f∗OY is a finite length

module supported at the origin. It is also an invariant of the singularity,

called the geometric genus of o (See Kollár). Since smooth varieties has

rational resolution, then R1g′∗OZ = 0. Therefore, the Leray spectral

sequence tells us that R1f∗OY = R1f ′∗OY .

Reference: Miled Reid, Park city Lecture notes.

Since R1f∗OY is supported at the origin, by Serre-Grothendieck

spectral sequence, we know that H1(OY ) = R1f∗OY . To compute

higher direct image sheaves, besides the definition, we have the formal

function theorem.

Theorem 1.14. Let f : Y → X be a proper morphism and S be a

subvariety of X. Then for any coherent sheaf F on Y , we have

R̂pf∗F = lim←−
k

Rpf∗(F/IkF ),

where I is the defining ideal of S in Y and the left hand side is the

completion along IOY .

Remark 1.15. The left hand side in fact is isomorphic to Rpf∗F since

Rpf∗F is coherent. A completion of a finitely generated module M
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over a Noetherian ring R can be obtained by extension of scalars: M̂ =

M ⊗R R̂.

By the formal function theorem, we see that there is an isomor-

phism

H1(OY ) = lim←−
Supp(D)⊂f−1(o)

H1(OD).

On the other hand, we have morphism H1(OY )→ H1(OD). Therefore,

there is a D such that H1(OY ) ∼= H1(O ′D) for all D′ ≥ D.

Definition 1.16 (Cohomology cycle). Let f : Y → (X, 0) be a res-

olution of an isolates normal surface singularity (X, o). A divisor D

supported on the exceptional locus is called a cohomology cycle if

H1(OY ) ∼= H1(OD).

Theorem 1.17. There exists a unique minimal cohomology cycle.

The proof is similar to the proof of existence of minimal nef cy-

cle.

Proof. Let D =
∑
diEi and D′ =

∑
d′iEi be two cohomology cycles.

We claim that D′′ = min(D,D′) =
∑

min di, d
′
iEi is also a cohomology

cycle. Write D = D′′ + R1 and D′ = D′′ + R2. Then R1 and R2 have

no common components. Therefore, ID∩D′ = OX(−D′′) ⊗ IΣ, where

Σ = R1 ∩R2.

We have the following exact sequences.

0→ ID∪D′ → ID ⊕ ID′ → ID∩D′ → 0,

which induces an exact sequence

0→ OD∪D′ → OD ⊕ ID′ → OD∩D′ → 0.

Therefore, we have an exact sequence

H1(OD∪D′)→ H1(OD)⊕H1(OD′)→ H1(OD∩D′)→ 0.

It is also easy to check that

0→ OΣ(−D′′)→ OD∩D′ → OD′′ → 0
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is exact by snake lemma. Therefore, h1(OD′′) ≥ h1(OD) + h1(OD′) −
h1(OD∩D′) = h1(OY ). We conclude that H1(OY ) → H1(OD′′) is an

isomorphism. �

Let f : Y → (X, o) be a resolution of a rational surface singularity.

Assume that X is affine. Then H1(OY ) = 0. Moreover, H2(OY ) = 0.

From the exponential sequce

0→ Z→ OY → O∗Y → 0

we see that

Pic(Y ) = H1(O∗Y ) = H2(Y,Z) =
n⊕
i=1

Z · Li,

where Li are divisors such that Li ·Ej = δij. A divisor L on Y is then

determined by the intersection numbers ai = L · Ei. Slightly move Li
to L′i, we get the same intersection number. Hence OY (Li) is globally

generated. A divisor L on Y is nef if and only if ai ≥ 0. Line bundles

associated to nef divisors are globally generated. The nef cone Nef(Y )

is
∑

Z+Li.

Let f : Y → (X, o) be a resolution of an isolated surface singular-

ity. Denote the maximal ideal associated to o by m. Then mOY =

OY (−Zmax) ⊗ IΣ where dim Σ = 0. Morevore, −Zmax is nef and

Zmax ≥ Znef .

Definition 1.18 (Fundamental cycle). The cycle Zmax is called the

fundamental cyle.

Remark 1.19. In Miles Reid’s book, Zmax is called the fiber cycle.

Theorem 1.20 (Artin). Assume that (X, o) is an rational surface sin-

gularity. Then

(1) mOY = OY (−Zmax), i.e. IΣ = OY . Moreover, Zmax = Znef .

(2) m/m2 = H0(OZmax(−Zmax) and the embedding dimension of o

is dimm/m2 = −Z2
max + 1.

(3) The multiplicity of o is −Z2
max.
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Proof. We may assume that X is affine. Since (X, o) is rational and

−Zmax is nef, then OY (−Zmax) is globally generated, equivalently,

H0(Y,OY (−Zmax)) ⊗ OY → OY (−Zmax) is surjective. Notice that

m = H0(Y,OY (−Zmax)) and mOY ⊂ OY (−Zmax). Therefore, mOY =

OY (−Zmax). Since Zmax ≥ Znef , hence m = H0(OY (−Zmax)) ⊂
H0(OY (−Znef )). Therefore H0(OY (−Znef )) = m. Since OY (−Znef )
is also globally generated, then mOY = OY (−Znef ) = OY (−Zmax).
Take the cohomology of the following short exact sequence

0→ OY (−2Zmax)→ OY (−Zmax)→ OZmax(−Zmax)→ 0.

Note that H1(OY (−2Zmax) = 0 and H1(OZmax(−Zmax) = 0 because

−Zmax is nef and big. We then have the following short exact sequence

0→ m2 = H0(OY (−2Zmax)→ m = H0(OY (−Zmax)→ H0(OZmax(−Zmax))→ 0.

The embedding dimension is given by

h0(OZmax(−Zmax)) = χ(OZmax(−Zmax)) = −Z2
max+1−pa(OZmax) = −Z2

max+1.

Apply the same trick to mk/mk+1, we see that

dimmk/mk+1 = h0(OZmax(−kZmax)) = −kZ2
max + 1.

Hence multoX = −Z2
max. �

By Artin’s theorem, we know that a rational surface singularity is

a hypersurface singularity if Z2
max = −2.

1.2. Du Val singularities.

Definition 1.21. Let f : Y → (X, o) be a minimal resolution of an

isolated surface singularity. Denote the fundamental cycle by Z. We

say (X, o) is a Du Val singularity if KY · E = 0 for any exceptional

curve E.

Theorem 1.22. An isolated surface singularity (X, o) is Du Val if

and only if (X, o) is a rational double point, equivalently a rational

singularity such that Z2 = −2.
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Proof. Assume that (X, o) is a rational double point. Then KY · Z =

2pa(Z) − 2 − Z2 = −2χ(OZ) − Z2 = 0. Because Y is minimal. We

know that KY is nef. As the fundamental cycle, Z supported on all

exceptional curves. Therefore, KY · Ei = 0.

Assume that (X, o) is a Du Val singularity. We need to show that

R1f∗OY = 0. By formal function theorem, it suffices to show that

H1(OD) = 0 for all effective D supported on exceptional curves. We

do this by induction. Write OY = OY (KY + A). Then A · E = 0 for

any exceptional curves E. Assume that D = E is irreducible. Then

OD = (KY +A)|D = KD + (A−E)|)D. Note that deg((A−E)|)D) =

−D2 ≥ 0. Therefore,

H1(OD) = H1(KE + (A− E)|E) = H0(−(A− E)|E) = 0.

Now write D = D′ + E. �

The classification of Du Val singularities are well known. The

following are all the possible Du Val singularities.

An : x2 + y2 + zn+1 = 0,

Dn : x2 + y2z + zn−1 = 0,

E6 : x2 + y3 + z4 = 0,

E7 : x2 + y3 + yz3 = 0,

E8 : x2 + y3 + z5 = 0.

1.3. Canonical model. Let X be a minimal surface of general type.

Then KX is nef and K2
X > 0. By Reider’s theorem, which will be

discussed later, Xcan = Proj ⊕ H0(mKX) is a surface. There is a

canonical birational morphism X → Xcan. The curves being contracted

are the curves C such that CK̇X = 0. Therefore, Xcan has only Du Val

singularities.

1.4. Gorenstein Singularities. Let X be a normal surface. We can a

canonical sheaf ωX by extending the canonical bundle OU(KU), where
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U is the smooth locus of X. A normal variety X is Gorenstein if ωX is

a line bundle.

Example 1.23. Let S be the surface x2 + y2 + z2 = 0. Then ωS ∼=
OS(KA3 |S)⊗NS.

Assume that f : Y → (X, o) is a minimal resolution. Since the

intersection matrix is negative definite, there is a unique Q-cycle ZK =∑
aiEi such that KY ·Ei = −ZK ·Ei for any exceptional curve Ei. By

negativity Lemma, ZK is effective.

Proposition 1.24. Assume that (X, o) is a normal Gorenstein surface

singularity. Let f : Y → (X, o) be the minimal resolution.

(1) KY is linear equivalent to an integral cycle −ZK =
∑
aiEi

where ai ≥ 0. Moreover, if OKY
is nontrivial, then ai > 0.

(2) ZK = Zcoh.

Proof. (1) Choose an effective cycle G = D +
∑
biEi ∼ KY , where

the components of D are not f -exceptional. Then f∗G = D̄ ∼
KX ∼ 0. Now note that f ∗D̄ ∼ 0. So KY ∼ G − f ∗f∗G =

−
∑
aiEi. We see that KY is linearly equivalent to −

∑
a′iEi.

We know that KY is also numerical equivalent to −
∑
aiEi.

Since
(
Ei · Ej

)
is negative definite. So a′i = ai and KY ∼ −ZK .

(2) Now OY (−
∑
aiEi) = OY (−ZK) = OY (KY ). Consider the

short exact sequence

0→ OY (−ZK)→ OY → OZK
→ 0.

By the Grauert-Riemannschneider Theorem, Rif∗OY (KY ) = 0

for all i > 0. Therefore, H1(OY ) = R1f∗OY → R1f∗OZ =

H1(OZ) is an isomorphism. So ZK is a cohomology cycle. Since

Zcon is the unique minimal cohomology cycle, then Zcoh ⊆ ZK .

If ZK−Zcon is strictly effective, then we may write ZK = E+D

such that E is an irreducible component and Zcoh ⊆ D. So
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H1(OD) ∼= H1(OY ). We will show that this can not be the

case. Consider the exact sequence

0→ OE(−D)→ OZK
→ OD → 0.

We want to show that H1(ωZK
)→ H1(OD) has non-trivial ker-

nel. By Serre duality, H1(OZK
) = H0(ωZK

) and H1(OD) =

H0(ωD). Note that ωZK
= (KY + ZK)|ZK

= OZK
and ωD =

(KY +D)|D = OD(−E). Now consider the exact sequence,

0→ OD(−E)→ OZK
→ OE → 0.

We see easily that H0(ωD)→ H0(ωZK
) is a nonzero map. This

completes the argument.

�

Theorem 1.25. Assume that f : Y → (X, o) be a minimal resolu-

tion of a normal surface singularity. If KY is numerically equivalent

to −ZK =
∑
aiEi where ai ∈ Z+ and ZK = Zcon, then (X, o) is a

Gorenstein singularity.

Lemma 1.26. Pic(ZK) ∼= Pic(Y )

Proof. Note that Supp(ZK) is a deformation retract of Y . Apply five-

lemma to cohomolgy sequences of the exponential sequences of Y and

ZK , we get the isomorphism. �

Lemma 1.27. KY
∼= OY (−ZK).

Proof. By our assumption, L = KY + ZK is numerically trivial. We

only need to show that L|Z = ωZ is trivial. Then by the previous

lemma L is trivial. We will show that L|Z is globally generated. If so,

we will have a morphism OZ → L|Z . Since L|Z is numerically trivial,

then OZ → L|Z must be an isomorphism. Write ZK = E + D, where

E is an irreducible component of ZK . By applying snake lemma, we

get the following exact sequence

0→ OY (KY +D)|D → L|Z → ωZ |E → 0.
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Since ZK is the minimal cohomology cycle, then H1(OE(−D)) →
H1(OZK

) is a non-zero map. By Serre duality, H0(OZK
)→ H0(ωZK

|E)

have a non-zero map. Since ωZ is numerically trivial. So ωZK
|E = OE

and the section 1 of H0(OE) can be lifted to ωZK
. This shows that ωZK

is generated by the section. We conclude that ωZK
= OZK

. �

2. Flip constructed from linear algebra

Let V = Ca+1 and W = Cb+1 with b ≥ a ≥ 0. Set H =

Hom(V,W ) = C(a+1)(b+1). Consider the subvariety X = {ϕ ∈ H |
rankϕ ≤ 1} of H. Outside the origin, actions of GL(V ) and GL(W )

will move ϕ ∈ X transitively. Therefore, X has an isolated singularity

at the origin. We will see that (X, o) has two natural resolutions.

One way to say that ϕ ∈ X is rank one is a 1-dimensional quotient

space Im(ϕ) = V/U of some a-dimensional subspace U ⊂ W . Another

way is that Im(ϕ) is a 1-dimensional subspace of W .

Denote by P = Pa = P(V ). 1-dimensional quotients of V are

classified by OP (1). Let Y = H om(OP (1),W ⊗ OP ) = W ⊗ OP (−1).

As the total space of a vector bundle Y is smooth. We have a natural

morphism f : Y → X ⊂ H, which maps a morphism OP (1)→ W ⊗OP

to the composition V ⊗OP → OP (1)→ W ⊗OP . It is easy to see that

the pre-image of a point outside the zero point of X is a single point.

Hence Y → X is a resolution. In fact, Y → X collapse the zero section

of Y . Denote the zero section by Z. Then the normal bundle NZ is

isomorphic to W ⊗ OP (−1). Therefore, ΩY/P
∼= N ∗

Z = W ∗ ⊗ OP and

KY |Z ∼= OP (−a− 1). Hence KY = π∗KP ⊗KY/P
∼= π∗OP (b− a) which

is nef by our assumption.

Denote by Q = Pb = P(W ∗) and Y ′ = H om(V ⊗ OQ,OQ(−1)) =

V ⊗OQ(−1). Then Y ′ is also a resolution which collapse the zero section

of Y ′. The morphism Y ′ → X sent a morphism V ⊗ OQ → OQ(−1)

to the compostions V ⊗ OQ → OQ(−1) → W ⊗ OP . Similarly, we get

KY ′
∼= π∗OQ(a− b) which is not nef.
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This is an example of flips. Moreover, X has a rational singularity

at the origin. Denote T = H × P(W ). T can be viewed as a trivial

vector bundle over P(W ) or a projective bundle of the trivial vector

bundle W ⊗ OH over H. Let p : T → H and q : T → P(W ) be the

two projections. Y is the vector bundle V ⊗ OP(W )(−1). Consider the

universal maps p∗V ⊗OT → p∗W⊗OT on T . We also have the following

exact sequence on T

p∗W ⊗ OT → OT (1)→ 0.

Therefore, V can be identified as the zero locus of a section of p∗V ⊗
OT (−1). This will give a resolution of OY . By chasing the resolution,

we can prove that Rip∗OY = 0 for i > 0.

3. Singularities of theta divisors

Let C be a smooth projective curve of genus g. We denote the

d-th symmetric product of C by C(d). Let Picd(C) be the degree d

component of the Picard group Pic(C). Set W r
d = {[L] ∈ Picd(C) |

h0(L) > r}. There is a morphism

ϕ : C(d) → W 0
d ⊂ Picd(C)

D =
d∑
i=1

pi ∈ C(d) 7→ [OC(D)].

Assume that L is a line bundle on C such that r = h0(L) > 0. The

fiber

ϕ−1([L]) = {D | D ≥ 0 and OX(D) ∼ L} = P(H0(L)∗) ∼= Pr−1.

When degL = g − 1, χ(L) = h0(L) − h1(L) = degL + 1 − g = 0. So

h0(L) = h0(KC − L). Denote by Θ = ϕ(C(g−1)) which is called the

theta divisor. For general L, h0(L) = h1(L) = 1. (??? Why?). This

says that ϕ : C(g−1) → Θ is birational.

Theorem 3.1 (Mumford).

dimW r
g−1 ≤ (g − 1)− 2r − 1.
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Let Σ = {x ∈ C(g−1) | dimϕ−1(ϕ(x)) ≥ 1}. By Mumford’s the-

orem, we know that that dim Σ ≤ g − 3. Hence ϕ is a small resolu-

tion.

The theta divisor is not smooth in general.

Theorem 3.2 (Riemann).

mult[L]Θ = dimH0(L).

Riemann singularity theorem tells us Θ has the singular locus

W 1
(g−1).

However, singularities of Θ are not to bad. The following theorem

tells us the Θ has rational singularities.

Theorem 3.3 (Kempf). The theta divisor Θ has rational singularities.

The proof is not very difficult. We will use the fact that Θ is a

hypersurface.

Proof. We want to show that Riϕ∗OC(g−1) = 0 for i > 0. Since Θ is a

hypersurface, then KΘ is a line bundle. Because ϕ is a small resolution,

we see that KC(g−1) = ϕ∗KΘ. By Grauert-Riemannshneider theorem

and projective formula, we see that

Riϕ∗OC(g−1) = Riϕ∗(KC(g−1) ⊗ ϕ∗(K−1
Θ )) = Riϕ∗KC(g−1) ⊗K−1

Θ = 0.

�

Using the fact that Θ is a hypersurface, in fact a determinantal

variety, at a point [L], Θ can be defined by a polynomial f = fm +

fm+1 + · · · , where fm is a degree m homogenious polynomial. Blowing

up [L], the tangent cone is define by fm in Pg−1. Let Λ = ϕ−1([L]) ∼=
Pr ⊂ C(g−1) and E be the exceptional divisor of the blowing up ψ :

BlΛC
(g−1) → C(g−1). We know that ϕ is a rational resolution, so is the

composition ϕ◦ψ. Therefore, dimkm
t+1/mt = h0(OE(−tE)), where f is

the maximal ideal of [L]. So we get mult[L]Θ = c1(OE(−E))g−2. Note
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that the exceptional divisor E is the projectivization of the normal

bundle N = NΛ/C(g−1) . So OE(−E) = OP(N)(1). On P(N), we have the

universal sequence

0→ Ω1
N/Λ(1)→ ψ∗N∗ → OP (1)→ 0.

So c1(OP (1)) = ψ∗(c1(N∗)) and c1(OE(−E))g−2 = ψ∗(c1(N∗))(g−2).

Now we compute the normal bundle N . Consider the product C × Λ,

where Λ = P(H0(L)∗). Let p : C×Λ→ C and q : C×Λ→ Λ be the two

projections. Then H0(p∗L⊗q∗OΛ(1)) = H0(L)⊗H0(OΛ(1)) = H0(L)⊗
H0(L)∗ = End(H0(L)). Let s ∈ H0(p∗L ⊗ q∗OΛ(1)) be the section

corresponding to the identity element in EndH0(L) and D = div(s) be

the universal divisor. We then have the following exact sequence

0→ OC⊗Λ → p∗L⊗ q∗OΛ(1)→ OD(D)→ 0.

Apply q∗, we have the exact sequence

0→ OΛ → H0(L)⊗OΛ(1)→ q∗OD(D)→ H1(OC)⊗OΛ → H1(L)⊗OΛ(1)→ 0,

because D → Λ is a finite morphism and R1q∗OD(D) = 0. We observe

that the cockerel of OΛ → H0(L) ⊗ OΛ(1) ∼= TΛ and q∗OD(D) ∼=
TC(g−1)|Λ . (Why the second equality?????) So we obtain the following

exact sequence

0→ N → H1(OC)⊗ OΛ → H1(L)⊗ OΛ(1)→ 0.

Hence we get c1(N∗) = c1((OΛ(r + 1))). Therefore,

mult[L]Θ = c1(OE(−E))g−2 = r + 1 = h0(L).

(Why (ψ∗c1((OΛ(r + 1))))g−2 = r + 1 ????)

4. Singularities in higher dimension

Recall that a normal surface singularity (X, o) is Du Val, if there

is a minimal resolution f : Y → X such that KY ·Ei = 0, equivalently,

KY = f ∗KX .
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The analogue in higher dimension is canonical singularities. Let

f : Y → X be a log resolution, i.e. Y is smooth, f is proper, bira-

tional and the exceptional divisors are simple normal crossing. Write

KY − f ∗KX =
∑
aiEi, where ai is called the log discrepancy of X

along Ei. We say that X has canonical singularities, if all a′is are

non-negative.

Theorem 4.1. Assume that X is an algebraic variety with only canon-

ical singularities and f : Y → X is a log resolution of X. Then

+∞⊕
m=0

H0(OX(mKX)) =
+∞⊕
m=0

H0(OY (mKY )).

Proof. Let E be the exceptional divisor. Notice that f∗OE(E) = 0.

Apply f∗ to the exact sequence

0→ OY → OY (E)→ OE(E)→ 0,

we see that f∗OY (E) = OY . Apply the projective formula, we obtain

the equality. �

Definition 4.2 (Analytic version). Let X be a smooth affine variety

and IZ =< f1, f2, . . . , fr > be the ideal of a subvariety Z. For an

positive number λ, the multiplier ideal of Z of weight λ is defined as

I (IλZ) = {g ∈ OX |
|g|2

(
∑
|fi|2)λ

∈ L1
loc}.

Example 4.3. Let A =< za > be an ideal in k[z]. The integral∫
|zb|dxdy =

∫
rbrdrdθ exists if and only if b + 1 > −1. Therefore,

I (λ) =< z[λa] >. More general, I ((za1
i · zann )λ) = ((zλa1

i · zλann )).

Let f : Y → X be a log resolution of the pair (X,Z), where Z is

a subvariety of X. The support Supp(Exc(f) + f−1(Z)) = E1 ∪ E2 ∪
· · · ∪ Er is simple normal crossing. Let z1, · · · , zn be local coordinates

of X and w1, · · · , wn be local coordinates of Y . Then

dw1 · · · dwndw̄1 · · · dw̄n = |Jac(f)|2dz1 · · · dzndz̄1 · · · dz̄n.
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Write relative canonical divisor KY/X = div(det(Jac(f))) =
∑
kiEi

and Iz · OY = OY (−
∑
biEi). Then g ∈ I (IλZ) if and only if ordEi

g ≥
[λbi]− ki. So we can define multiplier ideal sheaves algebraically.

Definition 4.4 (Algebraic version). Let f : Y → X be a log resolution

of the pair (X,Z). Then the multiplier ideal sheaf of Z of weight λ is

I (IλZ) = f∗OY (KY/X − [λE]),

where E is the exceptional locus, i.e. OY (−E) = IZ · OY .

Definition 4.5. Let (X,D) be a pair where D is an effective Q-divisor.

The pair (X,D) is said to have

• Kawamata log terminal (kit) singularity if and only if the mul-

tipler ideal sheaf I (X,D) = OX , equivalently, ki − bi > −1;

• terminal singularity if and only if ki − bi > 0;

• canonical singularity if and only if ki − bi ≥ 0;

• log canonical singularity if and only if ki − bi ≥ 0.

Theorem 4.6 (Kawamata-Viehweg vanishing theorem). Let (X,∆) be

a pair, where ∆ =
∑
δiEi is simple normal crossing and X is smooth.

Let A be a nef and big Q-divisor such that KX +A+ ∆ is numerically

equivalent to a line bundle L. Then H i(L) = 0 for i > 0.

Theorem 4.7 (Nadel vanishing theorem). Let X be a smooth variety

and D be a Q-divisor on X. Assume that L is an integral divisor such

that L−D is nef and big. Then

H i(OX(KX + L)⊗I (D)) = 0, for all i > 0,

where I (D) is the multiplier ideal sheaf of D.

Let A be an abelian variety of dimension g and Θ be a line bundle

on A. Then the following are equivalent

(1) ci(Θ)g = g!,
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(2) h0(Θ) = 1,

(3) The morphism ϕΘ : A→ Pic0A = A∗ given by ϕΘ(x) = TxΘ⊗
Θ−1, where Tx is the translation by x, is an isomorphism.

Definition 4.8. An abelian variety A together with a line bundle Θ

satisfying one of the equivalent conditions is called a principal polarized

abelian variety (p.p.a.v. for short), denoted by (A,Θ).

Theorem 4.9. A p.p.a.v. (A,Θ) is log canonical if and only if the

multiplier ideal sheaf I ((1− ε)Θ) = OA for any ε > 0.

We need the following lemma.

Lemma 4.10. Let (A,Θ) be a p.p.a.v. and Z be a closed subscheme

of A. If H0(IZ ⊗Θ⊗ P ) 6= 0 for all P ∈ Pic0(A), then Z = ∅.

Proof. Since (A,Θ) is p.p.a.v., then Θ⊗ P = TxΘ for some x ∈ A. By

the assumption, H0(IZ ⊗ Θ ⊗ P ) 6= 0, for all P . Therefore, Z ∈ TxΘ
for all x ∈ A. However, ∩TxΘ = ∅ which forces Z to be empty. �

Proof of Kollar’s theorem. Assume for the contradiction that I ((1 −
ε)Θ) 6= OA for some ε. Let Z be the subvariety such that the ideal sheaf

IZ = I ((1 − ε). It is clear that H0(IZ ⊗ Θ) 6= 0. Since Θ is nef and

big, then H i(IZ ⊗Θ⊗ P ) = 0 for all i > 0 and P ∈ Pic0(A) by Nadel

vanishing theorem. Therefore, χ(IZ⊗Θ) > 0. Since P ∈ Pic0(A), then

χ(IZ ⊗Θ⊗ P ) > 0 which implies that H0(IZ ⊗Θ⊗ P ) 6= 0. So we see

that Z = ∅. �

Theorem 4.11 (Ein-Lazarsfeld). Assume that (A,Θ) is a p.p.a.v. and

Θ is irreducible. If Θ has canonical singularities then Θ has rational

singularities.

5. Adjoint linear systems on surfaces

Conjecture 5.1 (Fujita). Let X be a smooth projective variety of di-

mension n and A be an ample divisor on X. Then
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(1) KX + (n+ 1)A is base-point-free.

(2) Kx + (n+ 2)A is very ample.

For surfaces, Reider proved the conjecture. The base-point-freeness

of KX + (n+ 1)A in 3 and 4 dimensional was proved by Ein-Lazarsfeld

and Kawamata respectively. The conjecture is open for higher dimen-

sional varieties.

Reider’s proof uses Bogomolov unstability theorem

Theorem 5.2 (Bogomolov). Let E be a rank 2 vector bundle on a

smooth projective surface X. The the following are equivalent

(1) c2
1(E)− 4c2(E) > 0.

(2) Let L = det(E ). There exists a divisor B, a 0-dimensional

subscheme W ⊂ X and an exact sequence

0→ OX(L−B)→ E → IW ⊗ OX(B)→ 0

such that (L − 2B)2 > 4 degW and (L − 2B) · H > 0 for any

ample divisor H.

For higher dimensional variety, so far we don’t have any analogue

of Bogomolov’s theorem. The proofs of Ein-Lazarsfeld and Kawamata

use multiplier ideal sheaves and Kawamata-Viehweg vanishing theo-

rem.

Theorem 5.3 (Reider). Let X be a smooth projective surface and A

be a nef and big divisor on X. Assume that A2 > 4, then the linear

system |KX + A| is base point free at a point p ∈ X, unless there is a

curve B passing through p such that

(1) B2 = −1 and (KX + A) ·B = 0, or

(2) B2 = 0 and (KX + A) ·B = 1.
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Proof. Write L = KX + A. Consider the exact sequence

0→ OX(L)⊗ Ip → OX(L)→ OX(L)|p → 0,

where Ip is the ideal sheaf of p in OX . Since A is nef and big, then

H1(OX(L)) = 0. The obstruction of |L| being base point free at p is in

H1(OX(L)⊗ Ip). By Serre duality, we have

(H1(OX(L)⊗Ip))∗ ∼= Ext1(OX(L)⊗Ip,O)X(KX)) = Ext1(OX(A)⊗Ip,OX).

If |L| is not base point free at p, then there is an nonzero element

η ∈ Ext1(OX(A)⊗ Ip,OX). So we have an extension

0→ OX → E → OX(A)⊗ Ip → 0.

It is easy to check that c1(E)2 − 4c2(E) = A2 − 4 > 0. By Bogomolov

theorem, we have an exact sequence

0→ OX(A−B)→ E → OX(B)⊗ IW → 0,

such that (A − 2B)2 > 4 and (A − 2B) ·H > 0 for any ample divisor

H. Observe that the composition of morphism OX(A − B) → E →
OX(A) ⊗ Ip is nontrivial. So we see that H0(OX(B) ⊗ Ip) 6= 0. Then

there is an effective divisor D linearly equivalent to B and passing

through p. Since c2(E )) = 1. Then (A−D) ·D+ degW = 1. To prove

the theorem, it suffices to show that (A−D) ·D = 1 and D2 ≤ 0. �
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